

SYNTHESIS AND SPECTRAL PROPERTIES OF METHYL 6-ACETYL- OR 6-CYANO-3-AMINO-2-BENZOYL-7-FURYL-5-METHYL- INDOLIZINE-8-CARBOXYLATES

Miloslav CHUDIK¹, Stefan MARCHALIN² and Katarina HAVRILOVA

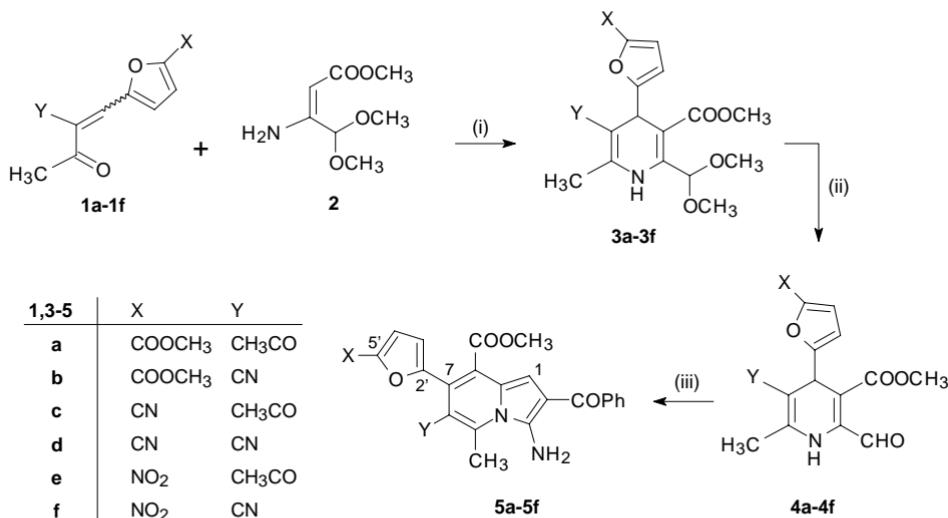
Department of Organic Chemistry, Slovak Technical University, Radlinskeho 9, 812 37 Bratislava,
Slovak Republic; e-mail: ¹mchudik@chelin.chof.stuba.sk, ²smarchal@chelin.chof.stuba.sk

Received January 26, 1998

Accepted May 5, 1998

Good yields of methyl 6-acetyl- or 6-cyano-3-amino-2-benzoyl-5-methyl-7-(5-substituted-2-furyl)-indolizine-8-carboxylates (**5a**–**5f**) were obtained in the reaction of corresponding 5-acetyl- or 5-cyano-2-formyl-4-(5-substituted-2-furyl)-6-methyl-1,4-dihydropyridine-3-carboxylated (**4a**–**4f**) with 3-phenyl-3-oxopropanenitrile. Spectral properties of the indolizines **5** are discussed.

Key words: 1,4-Dihydropyridines; Indolizines; 2-Formyl-1,4-dihydropyridines; 3-Aminoindolizines; Intramolecular cyclization.


Substituted pyrrolo[1,2-*a*]pyridines known as indolizines are used as photographic sensitizers and dyes^{1,2}. Some indolizine derivatives are calcium entry blockers³ and they showed effectiveness in treatment of angina pectoris⁴. Also the indolizine ring system is present in many natural alkaloids⁵.

3-Aminoindolizines can be prepared by the reaction of 2-bromomethylpyridine with phenylacetonitrile in the presence of sodium amide⁶, Michael addition of substituted acetonitriles on 2-pyridylchalcones, followed by an intramolecular cyclization⁷, electrochemical reduction⁸ of appropriate substituted pyridines or pyridinium salts, or by reduction of corresponding nitro-, azo- or nitrosoindolizine⁹.

The scrutiny of the reactivity of 2-substituted 1,4-dihydropyridine derivatives led us to discover a novel simple and efficient method for the synthesis of dialkyl 3-amino-7-aryl-5-methylindolizine-6,8-dicarboxylates from the easily available dialkyl 4-aryl-2-formyl-6-methyl-1,4-dihydropyridine-3,5-dicarboxylates and 3-phenyl-3-oxopropanenitrile^{10,11}. In this paper we report the synthesis of methyl 6-acetyl- or 6-cyano-3-amino-2-benzoyl-7-(5-substituted-2-furyl)-5-methylindolizine-8-carboxylates and influence of substituents in positions 4 and 5 of 1,4-dihydropyridines on reaction with 3-oxo-3-phenylpropanenitrile.

RESULTS AND DISCUSSION

The starting 2-(dimethoxymethyl)-1,4-dihydropyridines **3** were prepared by the modified Hantzsch synthesis (Scheme 1). Cyclocondensation of 2-[(5-substituted-2-furyl)methylene]-3-oxobutanenitriles **1a**, **1c**, **1e** with methyl 3-amino-4,4-dimethoxy- but-2-enoate (**2**) in propan-2-ol afforded 5-cyano-2-dimethoxymethyl-1,4-dihydropyridines **3a**, **3c**, **3e** in good yields (62–70%). Analogously, the reaction of 3-[(5-substituted-2-furyl)methylene]-pentane-2,4-diones **1b**, **1d**, **1f** with enamine **2** gave 5-acetyl-2-(dimethoxymethyl)-1,4-dihydropyridines **3b**, **3d**, **3f** in 55–67% yields. 2-Formyl-1,4-dihydropyridines **4a**–**4f** were prepared by acid hydrolysis of the corresponding 2-(dimethoxymethyl)-1,4-dihydropyridines **3a**–**3f** in 56–80% yields.

(i) iPrOH, reflux; (ii) 6 M HCl, acetone; (iii) PhCOCH₂CN, piperidine, EtOH, reflux

SCHEME 1

The synthesis of methyl 6-acetyl- and 6-cyano-3-amino-2-benzoyl-5-methyl-7-(5-substituted-2-furyl)indolizine-8-carboxylates was performed through a tandem reaction (Knoevenagel reaction, sigmatropic rearrangement and intramolecular nucleophilic addition)^{10,11} of 2-formyl-1,4-dihydropyridines **4** with 3-oxo-3-phenylpropanenitrile. Thus, the corresponding 2-formyl-1,4-dihydropyridines **4a**–**4f** and 3-oxo-3-phenylpropanenitrile were refluxed in the presence of piperidine in ethanol. The target 3-amino-indolizines **5** (dark red crystals) were obtained in good yields (Table I). The formyl group in position 2 in compounds **4a**–**4f** is more reactive in comparison with 4-aryl-2-formyl-6-methyl-1,4-dihydropyridine-3,5-dicarboxylates. Contrary to the case of the latter compounds^{10,11} we did not isolate at low temperature any 2-(2-benzoyl-2-cyano-vinyl)-1,4-dihydropyridine as a primarily arising intermediate; in all cases, a direct intra-

TABLE I

Analytical and spectral data of 2-dimethoxymethyl-1,4-dihydropyridines **3a**–**3f**, 2-formyl-1,4-dihydropyridines **4a**–**4f** and 3-aminoindolizines **5a**–**5f**

Compound	X	Y	M.p. °C	Yield %	Calculated/Found			Mass spectra, <i>m/z</i>	IR (KBr) ν, cm ⁻¹
					% C	% H	% N		
3a	CO ₂ CH ₃	CH ₃ CO	95–96	62	58.01/57.92	5.89/5.84	3.56/3.56	393 (M ⁺), 361, 329, 318, 302	3 297, 1 677
3b	CO ₂ CH ₃	CN	162–163	63	57.44/57.62	5.36/5.35	7.44/7.48	376 (M ⁺), 344, 329, 285, 75	3 349, 2 197, 1 686
3c	CN	CH ₃ CO	101–102	65	59.99/60.23	5.59/5.50	7.77/7.87	360 (M ⁺), 328, 298, 285, 281	3 322, 2 222, 1 671
3d	CN	CN	128–130	67	59.47/59.69	4.99/4.70	12.24/12.32	343 (M ⁺), 311, 296, 252, 75	3 323, 2 228, 2 206
3e	NO ₂	CH ₃ CO	120–122	70	53.68/53.79	5.30/5.14	7.37/7.44	380 (M ⁺), 348, 331, 305, 289	3 353, 1 682
3f	NO ₂	CN	134–136	55	52.89/52.73	4.72/4.63	11.57/11.57	363 (M ⁺), 331, 272, 219, 75	3 363, 2 207, 1 686
4a	CO ₂ CH ₃	CH ₃ CO	124–125	56	58.79/58.55	4.93/5.02	4.03/3.93	347 (M ⁺), 304, 287, 272, 244	3 318, 1 699
4b	CO ₂ CH ₃	CN	156–158	79	58.18/58.37	4.27/4.46	8.48/8.38	330 (M ⁺), 298, 270, 255, 239	3 325, 2 200, 1 712
4c	CN	CH ₃ CO	140–142	80	61.14/61.36	4.49/4.62	8.91/8.88	314 (M ⁺), 260, 254, 239, 211	3 351, 2 227, 1 702
4d	CN	CN	169–171	73	60.61/60.48	3.73/3.77	14.14/14.11	297 (M ⁺), 265, 237, 236, 209	3 291, 2 229, 2 202
4e	NO ₂	CH ₃ CO	156–157	65	53.89/53.99	4.22/4.31	8.38/8.34	334 (M ⁺), 317, 285, 275, 244	3 321, 1 707
4f	NO ₂	CN	160–161	63	53.00/53.11	3.49/3.76	13.24/12.96	317 (M ⁺), 300, 288, 268, 255	3 330, 2 201, 1 718
5a	CO ₂ CH ₃	CH ₃ CO	171–172	64	65.82/65.65	4.67/4.70	5.90/5.85	474 (M ⁺), 369, 355, 105, 77	3 419, 1 729
5b	CO ₂ CH ₃	CN	191–193	86	65.64/64.78	4.19/4.48	9.19/9.40	457 (M ⁺), 382, 352, 105, 77	3 436, 2 221, 1 734
5c	CN	CH ₃ CO	158–159	67	68.02/67.92	4.34/4.35	9.52/9.49	441 (M ⁺), 382, 336, 105, 77	3 435, 2 224, 1 733
5d	CN	CN	232–234	67	67.92/68.09	3.80/3.83	13.20/13.38	424 (M ⁺), 319, 289, 105, 77	3 480, 2 225, 1 732
5e	NO ₂	CH ₃ CO	165–167	69	62.47/62.65	4.15/4.17	9.11/9.20	461 (M ⁺), 251, 105, 77, 51	3 414, 1 730
5f	NO ₂	CN	246–247	91	62.16/62.19	3.63/3.66	12.61/12.70	444 (M ⁺), 383, 370, 105, 77	3 415, 2 223, 1 723

molecular cyclization affording indolizine took place. Unlike 5-alkoxycarbonyl-2-formyl-1,4-dihydropyridines (which need at least 5 h to complete reaction) in the case 5-acetyl and 5-cyano derivatives reaction is faster (1 h) and also at room temperature cyclization was observed. It seems that higher reactivity of 2-formyl-1,4-dihydropyridines **4a–4f** is a result of superposition both substitutions, acetyl or cyano group instead of alkoxy-carbonyl^{10,11} in the position 5 and 5-substituted-2-furyl instead of substituted phenyl in the position 4. We did not observe any differences in the reactivity of 5-acetyl and 5-cyano-2-formyl-1,4-dihydropyridines **4a–4f**. Also there was no influence of substituents in the position 5 of furan ring.

The structure of compounds **3**, **4** and **5** was proved by elemental analysis and spectral measurements. The IR spectra of 1,4-dihydropyridines **3a–3f** and **4a–4f** exhibit an (NH) vibration band at 3 291–3 363 cm^{−1}, (C=O) bands at 1 691–1 729 cm^{−1} and all the compounds containing nitrile group shows (C≡N) stretching vibration bands at 2 197–2 229 cm^{−1}. The indolizines **5a–5f** exhibit (NH₂) bands at 3 414–3 480 cm^{−1} and (C=O) at 1 723–1 734 cm^{−1} (Table I). The NMR spectra are also in accord with the structures **3**, **4** and **5**.

The ¹H NMR spectra of 1,4-dihydropyridine derivatives **3** and **4** display proton signals at δ 4.85–5.49 ppm (Table II), which are characteristic of hydrogens at C-4 of the 1,4-dihydropyridine ring¹²; these are, however, absent in spectra of 3-aminoindolizine derivatives **5** (Table IV). Generally, 5-acetyl-1,4-dihydropyridines **3a**, **3c**, **3e** and **4a**, **4c**, **4e** exhibit H-4 hydrogen signals at lower fields in comparison with 5-cyano derivatives **3b**, **3d**, **3f** and **4b**, **4d**, **4f** (Table II). The ¹H NMR spectra of 3-aminoindolizines

TABLE II
¹H NMR chemical shifts δ (ppm) of **3a–3f** and **4a–4f**

Proton	3a	3b	3c	3d	3e	3f	4a	4b	4c	4d	4e	4f
CH ₃	2.35	2.17	2.23	2.19	2.37	2.20	2.35	2.27	2.35	2.27	2.38	2.29
CH ₃ O	3.77	3.69	3.77	3.71	3.77	3.72	3.78	3.78	3.85	3.80	3.86	3.97
H-4	5.28	4.85	5.31	4.88	5.36	4.89	5.43	4.98	5.45	5.01	5.49	5.06
H-3 ^a	6.12	6.27	6.15	6.28	6.31	6.42	6.27	6.47	6.36	6.57	6.50	6.72
H-4 ^a	7.03	7.09	6.97	7.04	7.20	7.25	7.07	7.16	7.27	7.38	7.38	7.48
NH	7.04	7.19	7.13	7.22	7.17	7.23	8.33	8.66	8.40	8.75	8.47	8.83
2-R ^b	6.01	6.03	6.00	6.01	6.00	6.01	10.42	10.39	10.42	10.40	10.43	10.41
	3.42	3.44	3.41	3.43	3.44	3.45	—	—	—	—	—	—
	3.49	3.49	3.49	3.49	3.51	3.51	—	—	—	—	—	—
X	3.82	3.83	—	—	—	—	3.85	3.81	—	—	—	—
Y	2.36	—	2.38	—	2.39	—	2.49	—	2.51	—	2.53	—
J _{3',4'} ^c	3.4	3.4	3.5	3.5	3.7	3.6	3.4	3.3	3.6	3.6	3.7	3.6

^a Doublet; ^b R = (CH₃O)₂CH for compounds **3a–3f** and R = CHO for **4a–4f**; ^c coupling constant in Hz.

TABLE III
 ^{13}C NMR chemical shifts δ (ppm) of 3a–3f and 4a–4f

Carbon	3a	3b	3c	3d	3e	3f	4a	4b	4c	4d	4e	4f
CH ₃	20.5	18.3	20.4	18.3	20.6	18.4	20.4	18.2	20.4	18.4	20.5	18.5
2-R ^a	54.3	54.0	54.4	54.4	54.2	54.2	186.1	185.9	185.9	185.8	185.7	185.7
	55.7	55.6	55.6	55.6	55.8	55.8	–	–	–	–	–	–
	98.1	97.8	98.0	97.9	98.1	97.8	–	–	–	–	–	–
C-2	144.9	144.9	144.9	145.0	145.5	145.5	139.3	139.2	139.5	139.3	139.7	139.4
C-3	108.3	98.9	107.9	98.3	108.0	98.0	111.4	109.2	110.4	108.4	110.0	108.1
C-4	34.6	35.2	34.4	35.3	34.5	35.7	35.3	35.8	35.0	35.9	35.1	36.3
C-5	101.1	82.4	100.6	81.7	100.1	81.5	107.3	81.7	107.4	81.5	107.2	81.2
C-6	145.0	146.6	145.2	147.0	145.5	147.3	145.2	147.1	147.1	145.4	147.3	147.6
C-2'	161.8	160.0	163.0	161.1	161.0	158.9	160.0	158.5	161.3	159.5	159.2	157.3
C-3'	107.5	107.8	106.9	107.4	108.9	109.2	108.4	108.9	107.8	108.3	109.6	110.2
C-4'	119.0	119.0	123.0	123.1	112.9	112.7	119.0	119.0	123.1	123.2	112.7	112.6
C-5'	143.2	143.7	124.4	125.2	151.1	151.6	143.8	144.2	125.1	125.9	151.9	152.0
CO ₂ CH ₃	51.5	51.6	51.6	51.7	51.7	51.8	52.5	52.5	52.5	52.6	52.6	52.8
CO ₂ CH ₃	166.2	165.7	165.8	165.5	165.7	165.4	165.6	165.1	165.2	164.8	165.1	164.8
X	51.6	51.6	111.7	111.5	–	–	51.7	51.7	111.5	111.3	–	–
	159.0	158.8	–	–	–	–	158.9	158.5	–	–	–	–
Y	29.8	118.7	29.8	118.4	30.1	118.3	29.8	118.2	30.0	118.0	30.2	117.8
	197.0	–	196.2	–	195.9	–	196.6	–	195.9	–	195.7	–

5a–5f showed proton signals at δ 6.53–6.73 ppm (Table IV), typical for 3-aminoindolizines⁸. The ^{13}C NMR spectra (Tables III and V) show theoretical number of signals. The chemical shifts of the dihydropyridine, indolizine and furan carbon atoms were assigned by comparison with ^{13}C NMR spectra of other 2-formyl-1,4-dihydropyridines and 3-aminoindolizines¹¹ and using of additivity rule.

Typical signal in ^{13}C NMR spectra of 1,4-dihydropyridines is that of the C-4 of the pyridine ring at 34.4–36.3 ppm (Table III). The C-5 carbon of the 5-acetyl derivatives is shifted downfield by 19–27 ppm as compared with 5-cyano derivatives (Tables III and V), which is caused by the anisotropic effect of the cyano group. The chemical shift of C-1 at 102.8–105.9 ppm (Table V) is characteristic for 3-aminoindolizines⁸. The molecular ion $[\text{M}]^+$ observed in all the spectra of 3-aminoindolizines **5a–5f** lose the benzoyl cation ($m/z = 105$), the most intensive ionic species in spectra (Table I). The benzoyl cation decomposes to C=O and C_6H_5^+ ($m/z = 77$).

In summary, we found efficient and convenient method for preparation of 5-acetyl- and 5-cyano-3-aminoindolizines **5a–5f**. We observed that substituents in positions 4 and 5 have an important influence on rate of intramolecular cyclization. The electron-withdrawing substituents accelerate reaction.

EXPERIMENTAL

Melting points were measured on a Boetius micro hot-stage and are uncorrected. The infrared spectra were recorded on a Philips analytical PV 9800 FT IR spectrophotometer (KBr pellets). The NMR spectra were recorded on a Bruker AC-250 spectrometer (250 MHz) in CDCl_3 (**3a–3f** and **4a–4f**) and

TABLE IV
 ^1H NMR chemical shifts δ (ppm) of 3-aminoindolizines **5a–5f**

Proton	5a	5b	5c	5d	5e	5f
CH ₃	2.79	3.18	2.80	3.18	2.81	3.17
CO ₂ CH ₃	3.72	3.74	3.72	3.72	3.75	3.76
H-1	6.53	6.61	6.60	6.68	6.65	6.73
H-3 ^a	6.46	7.00	6.58	7.01	6.66	7.15
H-4 ^a	7.36	7.45	7.68	7.76	^b	7.80
Ph	7.5–7.8	7.5–7.8	7.5–7.8	7.5–7.8	7.5–7.8	7.5–7.8
X	3.38	3.84	—	—	—	—
Y	2.27	—	2.22	—	2.35	—
NH ₂	7.15	7.34	7.12	7.23	7.20	7.33
<i>J</i> _{3',4'} ^c	3.6	3.6	3.8	3.7	4.1	4.0

^a Doublet; ^b not observed; ^c coupling constant in Hz.

in $(CD_3)_2SO$ (**5a–5f**) using tetramethylsilane as internal standard. Thin layer chromatography was performed on precoated plates of silica gel 60 F 254 (Merck) and the spots were visualized using UV lamp or iodine vapour. Mass spectral measurements were recorded on an AEI MS 902 S spectrometer.

The Michael acceptors **1a–1f** were prepared by Knoevenagel condensation of the corresponding 2-furancarbaldehyde with 3-oxobutanenitrile¹³ or pentane-2,4-dione¹⁴, respectively. Methyl 3-amino-4,4-dimethoxybut-2-enoate was obtained from ammonia and methyl 4,4-dimethoxy-3-oxobutanoate¹⁵, which was prepared in three steps from dichloroacetic acid¹⁶.

TABLE V
 ^{13}C NMR chemical shifts δ (ppm) of 3-aminoindolizines **5a–5f**

Carbon	5a	5b	5c	5d	5e	5f
CH ₃	16.9	19.3	17.0	19.3	16.9	19.4
CO ₂ CH ₃	52.8	52.8	52.9	52.9	53.0	53.2
CO ₂ CH ₃	165.6	165.0	165.3	164.7	165.2	164.6
C-1a	112.9	112.7	112.4	112.4	111.3	111.2
C-1	102.8	104.4	103.5	105.1	104.3	105.9
C-2	108.3	108.3	108.5	108.4	108.7	108.7
C-3	144.9	145.2	145.0	145.2	145.2	145.5
C-5	133.5	148.3	133.9	148.3	133.8	148.4
C-6	122.1	95.1	121.9	95.3	122.0	94.8
C-7	124.4	123.3	124.5	123.9	125.1	124.4
C-8	123.9	121.7	124.3	121.4	124.0	121.5
C-2'	152.0	150.8	153.6	152.3	151.5	150.2
C-3'	111.8	112.6	111.5	112.3	113.3	114.1
C-4'	120.0	119.8	125.4	125.1	114.9	114.7
C-5'	143.2	143.5	124.3	124.7	151.0	150.8
C-1''	139.8	139.5	139.8	139.4	139.7	139.4
C-2''	128.5	128.6	128.5	128.6	128.5	128.5
C-3''	128.2	128.2	128.3	128.3	128.3	128.3
C-4''	131.4	131.6	131.4	131.6	131.5	131.7
X	52.0	52.0	111.5	111.5	—	—
	158.0	158.0	—	—	—	—
Y	32.0	116.7	32.1	116.4	32.4	116.5
	203.0	—	202.7	—	203.0	—
PhCO	191.5	191.3	191.5	191.3	191.5	191.3

Phenyl group: C-1'', 2'', 3'' and 4''.

Methyl 5-Acetyl- and 5-Cyano-2-(dimethoxymethyl)-6-methyl-4-(5-substituted-2-furyl)-1,4-dihydropyridine-3-carboxylates (**3a**–**3f**). General Procedure

A mixture of Michael acceptor **1a**–**1f** (0.016 mol) and methyl 3-amino-4,4-dimethoxybut-2-enoate (**2**; 2.4 g, 0.017 mol) was refluxed in propan-2-ol (40 ml) for 3–5 h. After cooling, the solvent was removed *in vacuo* to give an oil, which was triturated with methanol to afford **3a**–**3f**. The separated solid was filtered off and recrystallized from propan-2-ol. The yields and analytical data are given in Table I.

Methyl 5-Acetyl- and 5-Cyano-2-formyl-6-methyl-4-(5-substituted-2-furyl)-1,4-dihydropyridine-3-carboxylates (**4a**–**4f**). General Procedure

To a solution of **3a**–**3f** (2.3 mmol) in acetone (10 ml) 6 M hydrochloric acid (1.5 ml) was added and the mixture was stirred for 5 h at room temperature. After the reaction was completed, the solvent was removed to give a residue, which was pulverized by adding water (10 ml). The suspension was extracted with ethyl acetate (20 ml) and the extract was washed with aqueous solution of sodium hydrogencarbonate (10%, 10 ml) to pH about 7 and then twice with brine (10 ml). The dried solution was concentrated to give **4a**–**4f** as an oil which was crystallized from a mixture of ethyl acetate–isohexane. The crystals were collected by filtration and dried. The yields and analytical data are given in Table I.

Methyl 3-Amino-6-acetyl- and 3-Amino-6-cyano-2-benzoyl-5-methyl-7-(5-substituted-2-furyl)-indolizine-8-carboxylates (**5a**–**5f**). General Procedure

A mixture of 2-formyl-1,4-dihydropyridines **4a**–**4f** (1.3 mmol), 3-oxo-3-phenylpropanenitrile (0.19 g, 1.3 mmol) and piperidine (3 drops) in ethanol (5 ml) was refluxed for 1 h. The reaction mixture turned from yellow to the dark red and after few minutes a precipitate was formed. After standing at 0 °C overnight, precipitates were filtered off, dried and recrystallized from ethanol. The yields and analytical data are given in Table I.

This work was financially supported by the Grant Agency of the Slovak Republic (Grant No. 95/5195/202).

REFERENCES

1. Weidner C. H., Wordsworth D. H., Bender S. L., Beltman D. J.: *J. Org. Chem.* **1989**, *54*, 3660.
2. Flitsch W.: *Comprehensive Heterocyclic Chemistry* (A. R. Katritzky, C. W. Rees and E. F. Scriven, Eds), Vol. 8, p. 237. Pergamon, Oxford 1996.
3. Gubin J., de Vogelaer H., Ionin H., Houben C., Lucchetti J., Mahaux J., Rosseels G., Peirien M., Clinet M., Polster P., Chatelain P.: *J. Med. Chem.* **1993**, *36*, 1425.
4. a) Rosseels G., Peirien M., Inion H., Deray E., Richard J., Tornay C.: *Eur. J. Med. Chem.* **1982**, *17*, 581; b) Rosseels G., Peirien M., Cornil R., Inion H., Prost M., Descampes H., Bauthier J., Tornay C.: *Eur. J. Med. Chem.* **1983**, *18*, 339.
5. Michael J. P.: *Nat. Prod. Rep.* **1994**, *11*, 17.
6. Swinbourne F. J., Hunt J. H., Klinkert G.: *Adv. Heterocycl. Chem.* **1978**, *23*, 103.
7. Bodeker J., Fieblinger D., Koppel H., Radeglia R.: *Z. Chem.* **1988**, *183*.
8. Troll T., Beckel H., Lentner-Bohm C.: *Tetrahedron* **1997**, *53*, 81.

9. a) Hickman J. A., Wibberley D. G.: *J. Chem. Soc., Perkin Trans. I* **1972**, 2954; b) Hurst J., Melton T., Wibberley D. G.: *J. Chem. Soc.* **1965**, 2948; c) Melton T., Wibberley D. G.: *J. Chem. Soc. C* **1967**, 983.
10. Pham-Huu D.-P., Chudík M., Marchalin S.: *Chem. Papers* **1997**, *51*, 242.
11. Chudík M., Marchalin S., Pham-Huu D.-P., Humpa O., Friedl Z.: *Synth. Commun.*, in press.
12. Marchalin S., Kuthan J.: *Collect. Czech. Chem. Commun.* **1983**, *48*, 3123.
13. Marchalin S., Mamani L. N. H., Ilavský D., Pronayová N., Lesko J.: *Collect. Czech. Chem. Commun.* **1993**, *58*, 1388.
14. Marchalin S., Ilavský D., Kováč J.: *Z. Chem.* **1987**, *11*, 406.
15. Meyer H., Bossert F., Wehinger E., Stoepel K., Vater W.: *Arzneim.-Forsch.* **1981**, *31*, 407.
16. Royalas E., Robinson A. G.: *J. Am. Chem. Soc.* **1956**, *78*, 4146.